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Abstract. The statistics of branching processes of particles in a multiplicative medium are 
developed by taking account of a random non-stationary particle immigration. The proba- 
bility distribution functions of the number of particles found in the medium at any fixed 
time and/or of particles counted in a time interval are given in closed form. Also given 
are conditional probabilities, conditioned on having a fixed number of particles at time 
r = 0. These are applied to the case that exactly two particles are produced by branching. 

1. Introduction 

Branching processes or multiplicative processes have been studied in many fields for 
a long time. The early stochastic studies were done for the processes starting from a 
single particle or ancestor (Kendall 1948, Bellman and Harris 1952). The branching 
processes with immigration of particles from outside sources were first investigated by 
Sevastyanov (1957) and time-varying immigration was introduced by Hering (1973). 
In recent work, emigration as well as immigration has been taken into consideration 
(Pakes 1986). 

The application of branching processes was done to investigate the fluctuation of 
neutron number in a nuclear reactor in which neutron chain reactions take place (Bell 
1965, Kobayashi 1968) and the fluctuation of electron number by electron multiplicative 
processes in solids (Lin 1979, 1981). In the field of high-energy physics, the observed 
particle spectra have also been studied by using statistics of Markov branching processes 
(Giovannini 1979, Carruthers and Shin 1985, Shin 1986). In these studies, however, 
the equations for the probability generating function (PGF) are not solved in closed 
form except for a very few cases, and the probability distribution functions are in 
general obtained only for the case that the branching processes are started with some 
particles injected at the initial time. This holds also for several recent works on fractals 
(Lushinikov er a1 1981) and l/f noise (Furukawa 1986). 

As can be seen from these works, the statistics of branching processes have been 
investigated enthusiastically, but only limited effort has been put into the investigation 
of the effect of random immigration and into that of time series using the branching 
model (Heyde 1986). In  the present work, therefore, the statistics of branching 
processes in the presence of random immigration are developed and the representations 
for time series are derived for a particular case that reaction rates of particles in the 
medium are constant. 
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2. Branching started from a single particle 

Consider a medium in which a particle may be subjected to capture and multiplicative 
reactions. By a multiplicative reaction, several particles appear in the medium and a 
branch is produced. We suppose in the present work that the system is homogeneous, 
i.e. the system is well stirred or the velocity of particles is infinitely large. 

2.1. Existing particles 

Suppose no particle existed in the medium before the time t = 0, and one particle has 
been injected at t = 0. We consider then the probability p (  n, t )  that n particles are 
found in the medium at time t > 0. This had been already considered by Kobayashi 
(1968) in the argument for the fluctuation of neutron number in a nuclear reactor, 
which is described briefly in the following. The equation for p ( n ,  t )  is easily obtained 
as 

-=A,(n+ l ) p ( n + l ,  t ) -A tnp(n ,  t ) + A ,  p v ( n  - v +  l )p(n  - v i -  1, t )  (1) d t  v = 2  

where A, and A, are probabilities of capture and multiplicative reactions, respectively, 
in unit time for a particle, 

A,  = A c +  A, (2) 

and py is the distribution function of the number of particles produced by a multiplica- 
tive reaction. It is normalised to E:==, p y  = 1. Introducing the PGF 

and 

equation (1) can be expressed as 

where 

@( W )  = A,$( W )  - A,w + A,.  

The initial and boundary conditions for h ( w ,  t )  are 

h ( w , O ) = w  

and 

h( 1, t )  = 1 

respectively. When A, and A, are constant, equation ( 5 )  is solved in closed form by 
the Laplace transformation so that 

(9 )  h ( w, 2 )  = F [  t + k (  w)] 
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where 

k ( w ) = l m  dw 

and F ( w )  is the inverse function of k ( w ) ,  i.e. F [ k ( w ) ]  = w due to ( 7 ) .  Equation (8) 
is satisfied since k( 1) = 00 and k(m)  = 1. 

2.2. Counted particles 

In order to consider the statistics of particles counted by a detector in the medium, 
we introduce the probability pm(  n, t )  that the detector counts m particles during a time 
interval (0, t )  and n particles are found in the medium at time t > 0 when one particle 
has been injected at t = 0. The PGF of pm ( n ,  t )  is given by 

Assuming the detector to be of absorption type, equations equivalent to (1) and ( 5 )  
are, respectively, 

dpm ( n' ') = A,( n + 1 ) p ,  ( n + 1 ,  t ) - A t  np, ( n, t ) 
d t  

and 

where A d  is the detection rate for a particle, A, describes capture of particles in the 
medium other than absorption by the detector, 

A t  = h,+h,,,= A,+ A d +  A,,, (14) 

4(U, W ) = h , ~ ( w ) - h , W + h , + A d U .  ( 1 5 )  

g ( u ,  w, 0) = w 

g ( 1 ,  1, t )  = 1 

and 

The PGF g ( u ,  w, t )  satisfies the conditions 

(16) 

( 1 7 )  
and 
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where 

and I (  U, w )  is the inverse function of K ( U, w )  with regard to w, i.e. I [  U, K ( U, w)] = w. 
The PGF of the probability p m ( t )  that m particles are counted during the time 

interval (0, t )  is given by 

3. Branching with random immigration 

When a random source exists in the medium, all the individual particles from the 
source can produce branches and, therefore, many branches having different origins 
are found in the medium. 

3.1. Existing particles 

The PGF of the probability P (  n, t )  that n particles are found in the medium at any time 
c-2 

~ ( w ,  t ) =  P(n, t )w"  
n =o 

is obtained by multiplying all the PGF for the individual source particles (Bell 1965), 
which is described by 

where S (  r) is the random immigration rate of source particles. Notice that the source 
is assumed to be present since t = to ,  and the initial state at t = to is assumed to be empty. 

3.2. Counted particles 

Consider the probability Pm( t, A t )  that m particles are counted during a time interval 
( t ,  t + A t ) ,  and define its PGF as 

X 

L(u, t, A t )  = Pm(t, At)t.". 
m -0 

The probability that no source particle appears in the medium during the time interval 
( to ,  t )  is 

P, =exp( -i,l S ( 7 )  dr) .  

Consequently, PsS(rl) d r l ,  PsS( 7,) dr lS(  r2) d r2 ,  . . . , are, respectively, the probabilities 
that one, two,. . . , particles appear in the medium in infinitesimal time intervals around 
the times T ~ ,  T~ and r2 ,  . . . . Supposing that a source particle which appears at ri 



Branching processes 3727 

( T ~  < t )  results in ni particles at time t and they contribute to the count in (t ,  t + A t ) ,  
the PGF of count probabilities due to source particles appearing in ( t o ,  t )  is, therefore, 

rr m 

r f + A f  

x J S (  q)f( v, t + A t  - 71) dq .  
Ti-I 

Since 

for a function y ( t ) ,  (26) and (27) become 

respectively. The PGF L(u, t, A t )  is obtained by multiplying (29) and (30): 

L(u, t ,  A t )  = H ( f ( u ,  At), t )  exp S ( T ) ( ~ ( V ,  t + A t - ~ ) - l ) d T  ( 3 1 )  

4. Time series representations 

We consider, in this section, conditional probabilities which are applicable to describe 
time series. 
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4.1. Existing particles 

Suppose P( m ;  n, t )  is the probability that n particles are found in the medium at time 
t > 0 after we had m particles at t = 0. From a similar consideration around (25), the 
probability P ( m ;  n, 1 )  is given by 

P(m; n, t)=eXp(-lo' S(T)dr)(Z"'  i = l  fi p ( n i ,  t )  

where Z(') is a sum over n,, n,, . . . , n,, k l ,  k 2 , .  . . , and ki constrained to 

n,+ n,+. . .+ n, + k , +  k , + .  . .+k, = n. 

If we multiply (32) by u m  and w n  and sum up over m and n, its ( I +  1)th term is written 
by 

13 m 
=exp(-[o'S(r)dr) m=O f u m  n = O  z") i = l  n p ( n i ,  t ) w n 3  

=exp( -io' S ( T )  dT) 2 [ U h ( W ,  t ) ] "  
m = O  

introducing the PGF 
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and using (28) and (33), 

m = O  
(35) 

For the FGF defined by (34), we can restrict to 

O S U S l  and O a w a l  (36) 

O ~ u h ( w ,  t ) < l  (37) 

and, therefore, 

unless both U and w become unity at the same time. In this case, (35) is expressed as 

G(u, w, t )  = eXp( lo' s( T ) (  h( W ,  t - 7) - 1) dT 
1 - u h ( w , t )  

where 

Q( w, t )  = exp( lof S (  T)( h ( w, t - 7)  - 1 )  d7 . ) (39) 

As can be seen from the above considerations, the coefficient Q ( w ,  t )  gives the effect 
of source particles appearing in (0, t )  and the other part of G( U, w, t )  is that of particles 
existing at t = 0. 

The conditional probability is given by 

where 

G m ( w ,  t )  = ( h ( w ,  t ) ) " ' .  ( 4 1 )  
Using Leibniz's formula, the ( n  - k)th differential coefficient of G, at w = 0 in (40) is 
described by a series 

( n - k ) !  n - k - l )  
n - k  

(G',"-k) 
) w = o =  (GL-1 ) ,=o(h"))  w = O  

I = O  ( n - k - I ) ! / !  

( n  - k ) !  n - k - / )  
n - k  = c  / =o  ( n - k - l ) !  ~ ( l ,  t)(GL-l ) w = o  
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because 

We introduce the functions 

1 
k !  

K',k' = - ( G',k'),=o 

and 

Equation (40) is expressed as 

where 

which is obtained successively using the relation 

Kbk'= 8 k , O .  

The term Q b k )  will be calculated when a more definite model is given. 

(47) 

(48) 

4.2. Counted particles 

We next consider the conditional probability P m ( k ;  n, t )  that m counts have been 
recorded during a time interval (0, t )  and n particles are found in the medium at time 
t > O  after we had k particles at t = O .  Repeating the familiar procedure, we obtain 
the expression for the PGF of P m ( k ;  n, t )  

3c W cc 

~ ( u ,  U, w, t ) =  u k  C u m  C w n p m ( k ;  n, t )  (49) 
k = O  m=O n = O  

as 

where 

R(u ,w, t )=exp S(T)(g(V,W,t-T)-l)dT . (51) 

The coefficient R ( u ,  w, t )  in (50) is the effect of source particles appearing in (0 ,  t )  
and the other part of T( U, U, w, t )  is that of particles existing at t = 0. 

( lb ) 

The conditional probability P m ( k ;  n, t )  is obtained similarly as before; 
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373 1 

(53) 

and 
m - i  n - j  

(54) K ( m - i . n - j )  - - 1 1 p1,(12,  t ) K ( k m _ ; i - ’ l . n - J - ‘ 2 ) .  
k 

I , = O  I,=O 

The term R( i3J)  in equation (53) represents the differential coefficient of R(u,  w, t )  of 
ith order on U and j th  order on w. The coefficient K‘,“-‘*”-’) for k > 0 can be calculated 
successively using the relation 

Si,oSj,o * ( 5 5 )  

5. Application 

In the above formulation, the branching is described by a distribution function p, , .  
Usually, p,, is unknown. In the present section, we suppose that exactly two particles 
are produced by a multiplicative reaction, which is a particular but very important 
and useful branching mode, and which has been studied by several workers (Feller 
1939, Kendall 1948). The distribution function p,, is, therefore, 

1 ( v = 2 )  
P ” = { o  ( v # 2 )  

and its PGF is given by 
2 $! / (w)=  w .  (57)  

5.1. Branching started from a single particle 

5.1.1. Existing particles. Equation (6) is written as 

O ( W )  = A,w’- A , W  + A ,  

= A,( w - l ) (w - P )  (58) 

P = A c l A m .  (59) 

where 

(i) Case of P # 1 (non-critical case). The function k ( w )  defined by (10) is, in this 
case, 

where 

(Y = A,- A,. 

The inverse function of k (  w )  is found from (60) as 
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Consequently the PGF shown in (9) is 

( 1 - P  e x p ( - a t ) ) w - p ( 1 - e x p ( - a t ) )  
( 1 - e x p ( - a t ) ) w - ( p - e x p ( - a t ) )  

h ( w ,  t ) =  

which satisfies ( 7 ) .  The probability p ( n ,  t )  is given, using (43), by 

p -exp(-at) 
( 1  -exp(-at))"-' 
( p  -exp(-at))"+l 

( P  - 1 ) 2  e-"' ( n  3 1 ) .  
p ( n ,  t )  = 

The mean number of particles found in the medium is 

and the variance of n is given by 

U:= E [ n ( n  - 1 ) ] + ~ ( n )  - E ( n 2 )  

(ii) Case of p = 1 (critical case). Because 

@(z) = A,( w - 1 ) 2 .  

in this case, 

1 1  k( W )  = -- - 
A, W - 1 '  

In a similar way to the previous case, 

(A,t - l ) w - A , t  
A,tw - (A, t+ 1 )  

h ( w ,  t ) =  

and 

The mean number of particles and the variance are, respectively, 

E ( n )  = 1 

and 

U: = 2A,t. 

The variance increases with time. 

5.1.2. Countedparticles. Using the function 4 ( u ,  v )  for this case 

4 ( ~ ,  W )  = A,w'- A,W + A , + A ~ u  
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the PGF shown in (19) is derived by the familiar procedure 

(5-7 exp(-@t) )w-~5(1  -exp(-Bt)) 
(1 - exp(-6t))w - (7 - 6 exp(-6r)) g(u, w, 1) = 

where 

6=[(Ac-Am)*+4AdA,(1 -U)]”* 

A,-6 5=- 
2Am 2Am 

A , +  6 
7=- 

and 

A, = A,+  A d .  

The probability is estimated from the following equation: 

(74) 

(75) 

(76) 

(77) 

We cannot find the general form of the mth differential coefficient at U = 0, but there 
will be no difficulty for numerical estimation of the probability, because the detection 
efficiency, i.e. A d ,  is usually small and estimation of the probability is, therefore, 
necessary only for small m. 

The PGF of p , ( t )  shown in (21) is described, using (74), by 

5.2. Branching with random immigration 

5.2.1. Existing particles. The source strength S ( t )  is assumed to be a constant S. 

the PGF is obtained as 
(i)  Case of P # 1 (non-critical case). From simple calculations using (23) and (63), 

(80) H(w, t )  = exp ( S -  ’-’In P - 1  
( p  - exp(-a( t - t o ) ) )  - (1 - exp( -a(  t - to))) w a 

The probability P(n, t )  is calculated easily from the PGF so that 

(81) 

r e x p ( ? ( P - l ) l n  a P -exp(-a( t -  t o ) )  ( n  3 1). 

The mean number of particles found in the medium and the variance are, respectively, 

(82) 
S 

E (  n )  = - ( 1  - exp( -a ( t  - t o ) ) )  
a 
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and 

(83)  
s 1  
a p - 1  U: = - - [ 1 - exp( -a ( t  - to))][p - exp( -a( t - to))]. 

(ii) Case of p = 1 (critical case). Using (23) and (69), 

- to ) ( l  - w)+ 11) 

( n  3 1) 
S 

x exp( -c ln(A,( t - to)  + 1) 

E ( n )  = S( t - to)  (86) 
and 

V: = S(  t - to)(A,( t - to) + I). 

5.2.2. Counted particles. (i)  Case of p # 1 (non-critical case). Using (79) and (80),  
the PGF shown in (31) is given by 

(88)  ( S In A( u, t, A t  ) exp( SZ,) L(u, t, A t )  = exp - 1 
where 

A( U, t, A t )  = 
( p  - 1)[(1-5) e -eAr+ 77 - 11 

1 (1 - l ) [ p  - ~ + ( ? - 1 )  e-a(f-ro)] e-'*'+(7-1)[p - 5 - ( 1 - l )  e-a+lJ 
(89)  

and 

[f( U, t + A t - T )  - 1 ] dT 

17 + 5 - 2 17-5 
e ((1 -5) exp(-OAt)+ 77 - 1 

= (1 - 5)(eeA1- 1) + 
(ii) Case of p = 1 (critical case). Using (79) and (84),  the PGF is shown as 

where 

((17 - I ) (  1 - l ) (  1 -e-eAr)  
(1 - I )  e+"+ 77 - 1 

A( U, t, A t )  = 1 + A,( t - to)  

and 
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5.3. Time series representations 

5.3.1. Existingparticles. (i)  Case of P # 1 (non-critical case). From (38) and (63), the 
PGF is obtained as 

G(u, w, t )  = 
(1 - w )  exp(-at) - ( P  - w )  

( l -pu) ( l -  w )  exp( -af ) - ( l -u) (p-  w )  

From simple calculations, the differential coefficients shown in (45) are 

( k = 0 )  
Q P-exp(-at)  

(95) 
{I;( 1 P - 1  S: P - 1  1 - exp( -at) 

- S - ( S 7  ) . . . ( S ~ + k - l ) ( ~ -  exp(--at) 

x exp( sP-1 In '-' ) ( k a l ) .  

In 
Q L k )  = 

Q P - e x p ( - ~ t )  

The conditional probability P ( m ;  n, t )  can be estimated by using (46), (47) and (95). 

5.3.2. Case of P = 1 (critical case). In a similar way 

1 +A,t(l- w )  
G ( u ,  w, t )  = exp( -? In[l + A,t( 1 - w)] 

A,t(l-  ~ ) ( l -  w ) +  1 - uw A m  

and 

( k = 0 )  

-+1 

Q L k )  = 

(97) 

xexp( - L l n ( l + A , r )  s ) ( k a l ) .  

5.3.3. Countedparticles. Using (50), (51) and (74), the PGF and the coefficient R ( v ,  w, t )  
are easily obtained as 

and 

v - 5  )]. (99) (e-e'- l ) w +  7 - 5  e-e' 
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Introducing the function B, ( U, t ) given by 

the coefficient Rb'.'' represented by (53) is described as 

The order i in (101) is the number of counts due to source particles appearing in (0, t ) .  
It is, therefore, sufficient to estimate Rb'." only for small i when the detection efficiency 
is small. 

5.4. Non-binary branching 

We have considered, in the above, the statistics of binary branching processes. In the 
case of general branching, the distribution function py is usually unknown as described 
before. It is, however, possible to estimate the moments of found or counted particle 
number when the mean number and variance of particles produced by a multiplicative 
reaction are known. 

Expanding $( w) around w = 1, 

v(u-1) 
$ ( w ) +  1 + f ( w  - l)+- (w-1)2 (102) 2 

where f and v( v - 1) are the means of v and v( Y - I ) ,  respectively. Equations ( 6 )  and 
(15) are then expressed as 

A,w2-[h ,+(v(  Y -  1) - P)A,,,]w+A,+ 
v(v-1) 

@(w)=-  
2 

and 

respectively. Comparing (103) with (58) and (104) with (73), we notice that all of the 
PGF obtained for binary branching are applicable to a non-binary case if the reaction 
rates are replaced as follows: 

v(v-1) 
A,+- A m  2 
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and 

(for existing particle statistics) (106) 

(for counted particle statistics). ( 106') 

These PGF are correct only around w = 1, and, therefore, can be used only for estimating 
the moments of particle number. The probabilities given by (64), etc, cannot be 
estimated with them. 

When the detection efficiency is small, the PGF given by (88) and (91) are, however, 
applicable for estimating the probabilities as well as for estimating the moments. In 
this case, the probability of counting one or more particles is exceedingly small and, 
therefore, the functionf(u, A t )  is very close to unity. Consequently, in order to estimate 
H [ f ( u ,  A t ) ,  t ]  in (31), it is sufficient to know h(w,  t )  only around w = 1. The other 
coefficient in (31) can be estimated correctly from the functionf( u, t )  which is obtained 
from g(u ,  w, t )  by setting w = 1 as shown in (21). It is, therefore, considered that (88) 
and (91) are applicable for estimating both the moments and probabilities in non-binary 
branching procesees if the reaction rates are replaced as in (105) and (106'). 
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